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Images and sculptures inspired by 
mathematical principles show off 
the intense beauty of the discipline 
By Stephen Ornes 

Manchester Illuminated Universal 
Turing Machine, #23 (1998) 
Roman Verostko 

Verostko trained as an artist in the 1940s, became a priest, left the priesthood, 
got married, dissected computers and learned to code in BASIC. He is a pioneer 
in algorithmic art, which generates new visions using computer programs, and 
he uses algorithms to guide the drawing arm of a pen plotter. 

He created this piece in 1998 after reading about the universal Turing machine 
(UTM) in Roger Penrose’s 1989 book The Emperor’s New Mind. The machine is 
named for computational pioneer Alan Turing, and the universal version is a 
machine that could emulate the functions of every specialized Turing machine, 
which means it could theoretically compute anything that could be computed. 
When Verostko learned about the UTM, he thought of it as a kind of foundational 
text of our time, a creation that would change culture forever. Through his religious 
studies, he had long been enamored of illuminated manuscripts—handwritten 
medieval texts embellished with elaborate illustrations in gold or silver—and 
decided the UTM was contemporary work that deserved illumination. 

This UTM “text” (above) is binary code, a long string of 0s and 1s, the language 
of computers. As illuminations that evoke the work of medieval scribes, Verostko 
separately created abstract figures (left), produced with a plotter pen. 
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We often regard mathematics With 
a cold reverence. The discipline is 
driven by rules and principles that 
are eternal and stoic. There will 
never be a countable number of 
primes, for instance, and the digits 
of pi will go on forever. 

Beneath that certainty, however, 
lies a sublime attractiveness. A 
proof or equation can have an ele- 
gant, aesthetic effect. Mathemati- 
cians who study group theory, for 
example, analyze rules governing 
rotations or reflections. Visually, 
these transformations can appear as 
intensely beautiful symmetries, such 
as the radial patterns of snowflakes. 

Some mathematicians and 
artists see a false choice between 
math and art. They choose not to 
choose. They ask questions using 
the language of numbers and 
group theory and find answers 
in metal, plastic, wood and com- 
puter screen. They weave, and they 
sketch, and they build. Many of 
them exchange ideas every year at 
the international Bridges confer- 
ence on math and the arts or meet 
at the biennial Gathering 4 Gard- 
ner, named for Martin Gardner, 
who wrote the celebrated Mathe- 
matical Games column in this 
magazine for 25 years. 

Now interest in math art appears 
to be blooming, shown by an uptick 
in exhibitions and even academic 
journals. Roots of the current wave 
go back to the end of the 20th cen- 
tury, but artists today call on a wider 
spectrum of mathematical muses 
and use more modern tools. Here 
are a few of the most striking works. 

Borromean Rings Seifert Surface (2008) 
Bathsheba Grossman 

For more than a decade Grossman, who lives near Boston, has been using 3-D 
printing to forge mathematical sculptures out of metal. She delights in symme- 
tries, impossibilities and the division of space. The three outer rings here do not 
touch one another but are still inextricably interlinked. If you remove one, the 
other two can separate. It is an ancient form called Borromean rings that is seen 
today in the logo of the International Mathematical Union. 

The rings are members of a mathematical family of link forms, each member 
characterized by three closed curves with no two physically connected. Their 
interactions are of particular interest to mathematicians who work in knot theo- 
ry. The surface bounded by the Borromean rings is called a Seifert surface. 

Grossman’s sculpture is part knot theory and part puzzle. To highlight the 
curious swoops of the surface, she used a perforated texture that both plays 
with light and draws attention to the curious topography. 
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Buddhabrot (1993) 
Melinda Green 

In the late 20th century a pattern called the Mandelbrot set took 
much of the math and art worlds by storm. It was a fractal set 
named for Benoit B. Mandelbrot, the late French-American 
mathematician who was the first to organize fractals into a field 
worthy of investigation. His 1982 book The Fractal Geometry 
of Nature remains a classic. 

The set starts with a point on a complex plane, represented 
by a two-dimensional graph, and that point is used as the initial 
value for a particular equation. After making the appropriate 
calculations, take the new answer and plug it back into the equa- 
tion. Repeat. If the answers do not get too large—increasing a 
bit, decreasing a bit—then the initial point is in the set. 

Plots of such sets show telltale shapes that repeat as you zoom 
in or out. But until the 1990s the Mandelbrot set had a standard 
appearance that made it look like a big bug, with little bugs scat- 
tered around its edges and smaller bugs attached to those bugs. 

Green, a computer programmer, did not like the “bug body” 
look. So she hammered out a program that showed more detail 
about the way certain points hopscotch around the plane. What 
appeared on her monitor was spooky. “I don’t know if I literally 
pinched myself,” she says. The image was a convincing facsimile 
of the Buddha, and Green revised the code to accentuate differ- 
ent colors. Many mathematicians compare the abstractions of 
mathematics to spiritual experiences, and Green’s “Buddhabrot” 
invokes that bridge explicitly. 

Aurora Australis (2010) 
Carlo H. Séquin 

In the math art world, Séquin, a computer scientist at the 
University of California, Berkeley, is known for making hun- 
dreds of pieces that give body to heady ideas about surfaces, 
twists and dimensions. He has produced a veritable zoo of 
pieces out of wood, metal and plastic. 

This piece, he says, was inspired by the celestial light show 
that plays out in the skies of the Southern Hemisphere: the 
Aurora Australis, or Southern Lights. The twisting ribbon of the 
sculpture invokes the turning ribbons of light. In the sculpture, 
the ribbon changes from flat to curved to flat again and con- 
nects to itself. If you trace the sculpture’s winding path with 
your finger, you will visit every part of it and wind up back 
where you started without lifting your finger. The inside surface 
is also the outside, which makes it a Möbius strip, the simplest 
known nonorientable surface, which means that you cannot 
use concepts such as “front” or “back” or “inside out” with it. 

According to Séquin, such visuals are not just captivating; 
they also provide access to heavy mathematical ideas. “It’s 
a way of getting people who hated math to refocus,” he 
says. “It’s a way to see math as much, much more than just 
rote learning.” 
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Hyperbolic Plane/Pseudosphere (2005) 
Daina Taimina 

Taimina’s adventures in geometric handicrafts began in the 1990s, 
when the now retired mathematician was teaching a class on 
hyperbolic geometry, a type of non-Euclidean geometry, at Cornell 
University. In Euclidean geometry, if you have a line and a point not 
on the line, there is only one other line that both passes through 
the point and is parallel to your first line. But in non-Euclidean 
geometries, there may be many lines that pass through the point 
and do not intersect the first line. This happens because a hyperbolic 
plane has constant negative curvature. (The surface of a sphere has 
constant positive curvature; negative curvature is more like what 
you would find on a saddle.) As a result, the angles of triangles on 
hyperbolic planes add up to less than 180 degrees. It is the kind of 

curvy weirdness that shows up as the frill on the edge of a kale leaf. 
Taimina wanted to create tactile models so her students could feel 

the curvature. Crochet, which she has been practicing almost her 
entire life, seemed like a good fit. With a crochet hook and yarn, she 
created a hyperbolic surface using a simple recipe, increasing the 
number of stitches exponentially. The one shown here takes the form 
of a pseudosphere, which has negative curvature everywhere. 

Since then, Taimina has made dozens of models in an array 
of colors—the largest weighs about 17 pounds—and can claim 
invention of “hyperbolic crochet.” Her method for creating dazzling 
blobs has only one basic step. “It’s very simple,” she says. “Keep 
constant curvature.” 

72 Scientific American, August 2018 

© 2018 Scientific American 

TH
IS

 PA
GE

: D
ES

IG
NE

D,
 C

RO
CH

ET
ED

 A
ND

 P
HO

TO
GR

AP
HE

D 
BY

 D
AI

NA
 TA

IM
IN

A;
 

OP
PO

SI
TE

 PA
GE

 (b
ot

to
m

): W
IT

H 
IN

SP
IR

AT
IO

N 
FR

OM
 A 

SK
ET

CH
 BY

 M
. C

. E
SC

HE
R 



Atomic Tree (2002) 
John Sims 

Mathematician-artist Sims lives in Sarasota, Fla., and draws 
inspiration from a range of mathematical ideas. The central 
image here depicts trees growing on a fractal, which is 
a pattern that is self-similar: it is the same at every scale, 
whether you zoom in or out. 

Such patterns appear in nature in bushy broccoli 
crowns and jagged mountain ranges, and scientists have 
used them to study a range of phenomena, from the 
structure of the cosmos to the flight patterns of birds. 

This figure combines images of a real tree, a drawn 
tree and a fractal in the shape of a tree. It “speaks to 
the intersection of math, art and nature,” Sims says. 
In “Atomic Tree,” the joined shapes serve as building 
blocks, repeated large and small and connected to form 
one big network. 

Sims first showcased this piece at MathArt/ArtMath, 
a 2002 exhibition he co-curated at the Ringling College of Art 
and Design. He has also produced many works inspired by the 
sequence of digits of pi, including quilts and dresses. With fellow 
mathematician-artist Vi Hart, in 2015 he produced a “Pi Day 
Anthem,” in which the duo recites the digits of pi over an infectious 
drum and bass groove. 

Scarabs (2018) 
Bjarne Jespersen 

Jespersen calls himself a magic wood-carver. The Danish artist aspires 
to disbelief: he wants people to see, hold and move his wood creations 
and still not believe in them. “I’m more of a magician than I am a 
mathematician or an artist,” he says. 

If you hold this ball in your hands, you quickly realize that each 
of these beetles jiggles independently from the rest, and yet they 
are interlocked and unable to be removed from the whole without 
breaking something. The ball is carved from a single block of beech. 

Jespersen has been inspired by Dutch artist M. C. Escher, much 
of whose art was mathematical in spirit. Escher popularized tessel- 
lations, which are geometric shapes that fit together in a repeated 
pattern that covers, or tiles, a plane. Mathematicians have long 
investigated the properties of tessellations—not only of a flat sur- 
face but also of higher dimensions. (Escher himself was inspired by 
the use of tessellations in Islamic art; in particular, the patterns used 
to decorate the walls of the Alhambra in southern Spain.) Jespersen’s 
“Scarabs” uses the little bug as the basis for its tessellation. 
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See more on Verostko's Illuminated UTM's:

http://www.verostko.com/manchester/manchester.html

http://www.verostko.com/manchester/manchester.html
http://www.verostko.com/manchester/manchester.html



